Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction (2008.11576v2)

Published 25 Aug 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Glioma, the malignant brain tumor, requires immediate treatment to improve the survival of patients. Gliomas heterogeneous nature makes the segmentation difficult, especially for sub-regions like necrosis, enhancing tumor, non-enhancing tumor, and Edema. Deep neural networks like full convolution neural networks and ensemble of fully convolution neural networks are successful for Glioma segmentation. The paper demonstrates the use of a 3D fully convolution neural network with a three layer encoder decoder approach for layer arrangement. The encoder blocks include the dense modules, and decoder blocks include convolution modules. The input to the network is 3D patches. The loss function combines dice loss and focal loss functions. The validation set dice score of the network is 0.74, 0.88, and 0.73 for enhancing tumor, whole tumor, and tumor core, respectively. The Random Forest Regressor uses shape, volumetric, and age features extracted from ground truth for overall survival prediction. The regressor achieves an accuracy of 44.8% on the validation set.

Citations (22)

Summary

We haven't generated a summary for this paper yet.