Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Convergence Rate Improvement of Richardson and Newton-Schulz Iterations (2008.11480v1)

Published 26 Aug 2020 in math.OC, cs.NA, and math.NA

Abstract: Fast convergent, accurate, computationally efficient, parallelizable, and robust matrix inversion and parameter estimation algorithms are required in many time-critical and accuracy-critical applications such as system identification, signal and image processing, network and big data analysis, machine learning and in many others. This paper introduces new composite power series expansion with optionally chosen rates (which can be calculated simultaneously on parallel units with different computational capacities) for further convergence rate improvement of high order Newton-Schulz iteration. New expansion was integrated into the Richardson iteration and resulted in significant convergence rate improvement. The improvement is quantified via explicit transient models for estimation errors and by simulations. In addition, the recursive and computationally efficient version of the combination of Richardson iteration and Newton-Schulz iteration with composite expansion is developed for simultaneous calculations. Moreover, unified factorization is developed in this paper in the form of tool-kit for power series expansion, which results in a new family of computationally efficient Newton-Schulz algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.