Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Influence, Utility, and Independence in Differential Privacy: A Curious Case of $3 \choose 2$ (2008.09702v2)

Published 21 Aug 2020 in cs.IT, cs.CR, and math.IT

Abstract: We study the relationship between randomized low influence functions and differentially private mechanisms. Our main aim is to formally determine whether differentially private mechanisms are low influence and whether low influence randomized functions can be differentially private. We show that differential privacy does not necessarily imply low influence in a formal sense. However, low influence implies approximate differential privacy. These results hold for both independent and non-independent randomized mechanisms, where an important instance of the former is the widely-used additive noise techniques in the differential privacy literature. Our study also reveals the interesting dynamics between utility, low influence, and independence of a differentially private mechanism. As the name of this paper suggests, we show that any two such features are simultaneously possible. However, in order to have a differentially private mechanism that has both utility and low influence, even under a very mild utility condition, one has to employ non-independent mechanisms.

Summary

We haven't generated a summary for this paper yet.