Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Attribute-Based and Relationship-Based Access Control Policies with Unknown Values (2008.08444v4)

Published 19 Aug 2020 in cs.CR and cs.AI

Abstract: Attribute-Based Access Control (ABAC) and Relationship-based access control (ReBAC) provide a high level of expressiveness and flexibility that promote security and information sharing, by allowing policies to be expressed in terms of attributes of and chains of relationships between entities. Algorithms for learning ABAC and ReBAC policies from legacy access control information have the potential to significantly reduce the cost of migration to ABAC or ReBAC. This paper presents the first algorithms for mining ABAC and ReBAC policies from access control lists (ACLs) and incomplete information about entities, where the values of some attributes of some entities are unknown. We show that the core of this problem can be viewed as learning a concise three-valued logic formula from a set of labeled feature vectors containing unknowns, and we give the first algorithm (to the best of our knowledge) for that problem.

Citations (8)

Summary

We haven't generated a summary for this paper yet.