Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning (2008.08198v2)

Published 18 Aug 2020 in eess.IV and cs.LG

Abstract: X-ray diffraction based microscopy techniques such as High Energy Diffraction Microscopy rely on knowledge of the position of diffraction peaks with high precision. These positions are typically computed by fitting the observed intensities in area detector data to a theoretical peak shape such as pseudo-Voigt. As experiments become more complex and detector technologies evolve, the computational cost of such peak detection and shape fitting becomes the biggest hurdle to the rapid analysis required for real-time feedback during in-situ experiments. To this end, we propose BraggNN, a deep learning-based method that can determine peak positions much more rapidly than conventional pseudo-Voigt peak fitting. When applied to a test dataset, BraggNN gives errors of less than 0.29 and 0.57 pixels, relative to the conventional method, for 75% and 95% of the peaks, respectively. When applied to a real experimental dataset, a 3D reconstruction that used peak positions computed by BraggNN yields 15% better results on average as compared to a reconstruction obtained using peak positions determined using conventional 2D pseudo-Voigt fitting. Recent advances in deep learning method implementations and special-purpose model inference accelerators allow BraggNN to deliver enormous performance improvements relative to the conventional method, running, for example, more than 200 times faster than a conventional method on a consumer-class GPU card with out-of-the-box software.

Citations (36)

Summary

We haven't generated a summary for this paper yet.