Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Multi-Hardware Mobile Models via Architecture Search (2008.08178v2)

Published 18 Aug 2020 in cs.CV

Abstract: Hardware-aware neural architecture designs have been predominantly focusing on optimizing model performance on single hardware and model development complexity, where another important factor, model deployment complexity, has been largely ignored. In this paper, we argue that, for applications that may be deployed on multiple hardware, having different single-hardware models across the deployed hardware makes it hard to guarantee consistent outputs across hardware and duplicates engineering work for debugging and fixing. To minimize such deployment cost, we propose an alternative solution, multi-hardware models, where a single architecture is developed for multiple hardware. With thoughtful search space design and incorporating the proposed multi-hardware metrics in neural architecture search, we discover multi-hardware models that give state-of-the-art (SoTA) performance across multiple hardware in both average and worse case scenarios. For performance on individual hardware, the single multi-hardware model yields similar or better results than SoTA performance on accelerators like GPU, DSP and EdgeTPU which was achieved by different models, while having similar performance with MobilenetV3 Large Minimalistic model on mobile CPU.

Citations (16)

Summary

We haven't generated a summary for this paper yet.