Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Sizing and Siting of Multi-purpose Utility-scale Shared Energy Storage Systems (2008.07900v1)

Published 18 Aug 2020 in eess.SY and cs.SY

Abstract: This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared energy storage in distribution systems with high penetration of solar photovoltaic energy systems. Small-scale behind-the-meter (BTM) batteries are expensive, not fully utilized, and their net value is difficult to generalize and to control for grid services. On the other hand, utility-scale shared energy storage (USSES) systems have the potential to provide primary (e.g., demand-side management, deferral of system upgrade, and demand charge reduction) as well as secondary (e.g., frequency regulation, resource adequacy, and energy arbitrage) grid services. Under the existing cost structure, storage deployed only for primary purpose cannot justify the economic benefit to owners. However, the delivery of storage for primary service utilizes only 1-50\% of total battery lifetime capacity. In the proposed approach, for each candidate set of locations and sizes, the contribution of USSES systems to grid voltage deviation and power loss are evaluated and diverse Pareto-optimal front is created. USSES systems are dispersed through a new chromosome representation approach. From the list of Pareto-optimal front, distribution system planners will have the opportunity to select appropriate locations based on desired objectives. The proposed approach is demonstrated on the IEEE 123-node distribution test feeder with utility-scale PV and USSES systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.