Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence-to-Sequence Predictive Model: From Prosody To Communicative Gestures (2008.07643v2)

Published 17 Aug 2020 in cs.HC, cs.CL, cs.CV, cs.SD, and eess.AS

Abstract: Communicative gestures and speech acoustic are tightly linked. Our objective is to predict the timing of gestures according to the acoustic. That is, we want to predict when a certain gesture occurs. We develop a model based on a recurrent neural network with attention mechanism. The model is trained on a corpus of natural dyadic interaction where the speech acoustic and the gesture phases and types have been annotated. The input of the model is a sequence of speech acoustic and the output is a sequence of gesture classes. The classes we are using for the model output is based on a combination of gesture phases and gesture types. We use a sequence comparison technique to evaluate the model performance. We find that the model can predict better certain gesture classes than others. We also perform ablation studies which reveal that fundamental frequency is a relevant feature for gesture prediction task. In another sub-experiment, we find that including eyebrow movements as acting as beat gesture improves the performance. Besides, we also find that a model trained on the data of one given speaker also works for the other speaker of the same conversation. We also perform a subjective experiment to measure how respondents judge the naturalness, the time consistency, and the semantic consistency of the generated gesture timing of a virtual agent. Our respondents rate the output of our model favorably.

Citations (16)

Summary

We haven't generated a summary for this paper yet.