Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SMPLpix: Neural Avatars from 3D Human Models (2008.06872v2)

Published 16 Aug 2020 in cs.CV

Abstract: Recent advances in deep generative models have led to an unprecedented level of realism for synthetically generated images of humans. However, one of the remaining fundamental limitations of these models is the ability to flexibly control the generative process, e.g.~change the camera and human pose while retaining the subject identity. At the same time, deformable human body models like SMPL and its successors provide full control over pose and shape but rely on classic computer graphics pipelines for rendering. Such rendering pipelines require explicit mesh rasterization that (a) does not have the potential to fix artifacts or lack of realism in the original 3D geometry and (b) until recently, were not fully incorporated into deep learning frameworks. In this work, we propose to bridge the gap between classic geometry-based rendering and the latest generative networks operating in pixel space. We train a network that directly converts a sparse set of 3D mesh vertices into photorealistic images, alleviating the need for traditional rasterization mechanism. We train our model on a large corpus of human 3D models and corresponding real photos, and show the advantage over conventional differentiable renderers both in terms of the level of photorealism and rendering efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sergey Prokudin (15 papers)
  2. Michael J. Black (163 papers)
  3. Javier Romero (35 papers)
Citations (76)