Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autonomous Braking and Throttle System: A Deep Reinforcement Learning Approach for Naturalistic Driving (2008.06696v1)

Published 15 Aug 2020 in cs.AI, cs.LG, and cs.RO

Abstract: Autonomous Braking and Throttle control is key in developing safe driving systems for the future. There exists a need for autonomous vehicles to negotiate a multi-agent environment while ensuring safety and comfort. A Deep Reinforcement Learning based autonomous throttle and braking system is presented. For each time step, the proposed system makes a decision to apply the brake or throttle. The throttle and brake are modelled as continuous action space values. We demonstrate 2 scenarios where there is a need for a sophisticated braking and throttle system, i.e when there is a static obstacle in front of our agent like a car, stop sign. The second scenario consists of 2 vehicles approaching an intersection. The policies for brake and throttle control are learned through computer simulation using Deep deterministic policy gradients. The experiment shows that the system not only avoids a collision, but also it ensures that there is smooth change in the values of throttle/brake as it gets out of the emergency situation and abides by the speed regulations, i.e the system resembles human driving.

Citations (8)

Summary

We haven't generated a summary for this paper yet.