Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A statistical theory of cold posteriors in deep neural networks (2008.05912v2)

Published 13 Aug 2020 in stat.ML and cs.LG

Abstract: To get Bayesian neural networks to perform comparably to standard neural networks it is usually necessary to artificially reduce uncertainty using a "tempered" or "cold" posterior. This is extremely concerning: if the prior is accurate, Bayes inference/decision theory is optimal, and any artificial changes to the posterior should harm performance. While this suggests that the prior may be at fault, here we argue that in fact, BNNs for image classification use the wrong likelihood. In particular, standard image benchmark datasets such as CIFAR-10 are carefully curated. We develop a generative model describing curation which gives a principled Bayesian account of cold posteriors, because the likelihood under this new generative model closely matches the tempered likelihoods used in past work.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com