Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

A Fine-Grained Hybrid CPU-GPU Algorithm for Betweenness Centrality Computations (2008.05718v1)

Published 13 Aug 2020 in cs.DC

Abstract: Betweenness centrality (BC) is an important graph analytical application for large-scale graphs. While there are many efforts for parallelizing betweenness centrality algorithms on multi-core CPUs and many-core GPUs, in this work, we propose a novel fine-grained CPU-GPU hybrid algorithm that partitions a graph into CPU and GPU partitions, and performs BC computations for the graph on both the CPU and GPU resources simultaneously with very small number of CPU-GPU communications. The forward phase in our hybrid BC algorithm leverages the multi-source property inherent in the BC problem. We also perform a novel hybrid and asynchronous backward phase that performs minimal CPU-GPU synchronizations. Evaluations using a large number of graphs with different characteristics show that our hybrid approach gives 80% improvement in performance, and 80-90% less CPU-GPU communications than an existing hybrid algorithm based on the popular Bulk Synchronous Paradigm (BSP) approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.