Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ScoreDrivenModels.jl: a Julia Package for Generalized Autoregressive Score Models (2008.05506v2)

Published 12 Aug 2020 in stat.CO and stat.ME

Abstract: Score-driven models, also known as generalized autoregressive score models, represent a class of observation-driven time series models. They possess powerful properties, such as the ability to model different conditional distributions and to consider time-varying parameters within a flexible framework. In this paper, we present ScoreDrivenModels.jl, an open-source Julia package for modeling, forecasting, and simulating time series using the framework of score-driven models. The package is flexible with respect to model definition, allowing the user to specify the lag structure and which parameters are time-varying or constant. It is also possible to consider several distributions, including Beta, Exponential, Gamma, Lognormal, Normal, Poisson, Student's t, and Weibull. The provided interface is flexible, allowing interested users to implement any desired distribution and parametrization.

Summary

We haven't generated a summary for this paper yet.