Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anytime Guarantees for Reachability in Uncountable Markov Decision Processes (2008.04824v2)

Published 10 Aug 2020 in eess.SY and cs.SY

Abstract: We consider the problem of approximating the reachability probabilities in Markov decision processes (MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for special classes of such MDP, provide a sequence of approximations converging to the true value in the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation. As this problem is undecidable in general, assumptions on the MDP are necessary. Our main contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the "boundary" of which systems can be correctly and reliably analyzed. To this end, we also argue why each of our assumptions is necessary for algorithms based on processing finitely many observations. We present two solution variants. The first one provides converging lower bounds under weaker assumptions than typical ones from previous works concerned with guarantees. The second one then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively improving precision, converging to the true value in the limit. Besides, due to the generality of our assumptions, our algorithms are very general templates, readily allowing for various heuristics from literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus paves the way for future practical improvements without sacrificing correctness guarantees.

Citations (3)

Summary

We haven't generated a summary for this paper yet.