Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical sets, crowns, and local maximum independent sets (2008.04587v1)

Published 11 Aug 2020 in cs.DM and math.CO

Abstract: A set $S\subseteq V(G)$ is independent (or stable) if no two vertices from $S$ are adjacent, and by $\mathrm{Ind}(G)$ we mean the set of all independent sets of $G$. A set $A\in\mathrm{Ind}(G)$ is critical (and we write $A\in CritIndep(G)$) if $\left\vert A\right\vert -\left\vert N(A)\right\vert =\max{\left\vert I\right\vert -\left\vert N(I)\right\vert :I\in \mathrm{Ind}(G)}$, where $N(I)$ denotes the neighborhood of $I$. If $S\in\mathrm{Ind}(G)$ and there is a matching from $N(S)$ into $S$, then $S$ is a crown, and we write $S\in Crown(G)$. Let $\Psi(G)$ be the family of all local maximum independent sets of graph $G$, i.e., $S\in\Psi(G)$ if $S$ is a maximum independent set in the subgraph induced by $S\cup N(S)$. In this paper we show that $CritIndep(G)\subseteq Crown(G)$ $\subseteq\Psi(G)$ are true for every graph. In addition, we present some classes of graphs where these families coincide and form greedoids or even more general set systems that we call augmentoids.

Citations (5)

Summary

We haven't generated a summary for this paper yet.