Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Network Embeddings for Improving Network Alignment (2008.04581v1)

Published 11 Aug 2020 in cs.SI

Abstract: Network (or Graph) Alignment Algorithms aims to reveal structural similarities among graphs. In particular Local Network Alignment Algorithms (LNAs) finds local regions of similarity among two or more networks. Such algorithms are in general based on a set of seed nodes that are used to grow an alignment. Almost all LNAs algorithms use as seed nodes a set of vertices based on context information (e.g. a set of biologically related in biological network alignment) and this may cause a bias or a data-circularity problem. More recently, we demonstrated that the use of topological information in the choice of seed nodes may improve the quality of the alignments. We used some common approaches based on global alignment algorithms for capturing topological similarity among nodes. In parallel, it has been demonstrated that the use of network embedding methods (or representation learning), may capture the structural similarity among nodes better than other methods. Therefore we propose to use network embeddings to learn structural similarity among nodes and to use such similarity to improve LNA extendings our previous algorithms. We define a framework for LNA.

Summary

We haven't generated a summary for this paper yet.