Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation and Data Selection for Semi-Supervised Learning in CTC Acoustic Models (2008.03923v1)

Published 10 Aug 2020 in cs.CL and eess.AS

Abstract: Semi-supervised learning (SSL) is an active area of research which aims to utilize unlabelled data in order to improve the accuracy of speech recognition systems. The current study proposes a methodology for integration of two key ideas: 1) SSL using connectionist temporal classification (CTC) objective and teacher-student based learning 2) Designing effective data-selection mechanisms for leveraging unlabelled data to boost performance of student models. Our aim is to establish the importance of good criteria in selecting samples from a large pool of unlabelled data based on attributes like confidence measure, speaker and content variability. The question we try to answer is: Is it possible to design a data selection mechanism which reduces dependence on a large set of randomly selected unlabelled samples without compromising on Word Error Rate (WER)? We perform empirical investigations of different data selection methods to answer this question and quantify the effect of different sampling strategies. On a semi-supervised ASR setting with 40000 hours of carefully selected unlabelled data, our CTC-SSL approach gives 17% relative WER improvement over a baseline CTC system trained with labelled data. It also achieves on-par performance with CTC-SSL system trained on order of magnitude larger unlabeled data based on random sampling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Prakhar Swarup (2 papers)
  2. Debmalya Chakrabarty (4 papers)
  3. Ashtosh Sapru (1 paper)
  4. Hitesh Tulsiani (3 papers)
  5. Harish Arsikere (7 papers)
  6. Sri Garimella (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.