2000 character limit reached
A family of finite element Stokes complexes in three dimensions (2008.03793v2)
Published 9 Aug 2020 in math.NA and cs.NA
Abstract: We construct finite element Stokes complexes on tetrahedral meshes in three-dimensional space. In the lowest order case, the finite elements in the complex have 4, 18, 16, and 1 degrees of freedom, respectively. As a consequence, we obtain gradcurl-conforming finite elements and inf-sup stable Stokes pairs on tetrahedra which fit into complexes. We show that the new elements lead to convergent algorithms for solving a gradcurl model problem as well as solving the Stokes system with precise divergence-free condition. We demonstrate the validity of the algorithms by numerical experiments.