Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Noncommutative Networks on a Cylinder (2008.02889v3)

Published 6 Aug 2020 in math.QA and math.GT

Abstract: In this paper a double quasi Poisson bracket in the sense of Van den Bergh is constructed on the space of noncommutative weights of arcs of a directed graph embedded in a disk or cylinder $\Sigma$, which gives rise to the quasi Poisson bracket of G.Massuyeau and V.Turaev on the group algebra $\mathbf k\pi_1(\Sigma,p)$ of the fundamental group of a surface based at $p\in\partial\Sigma$. This bracket also induces a noncommutative Goldman Poisson bracket on the cyclic space $\mathcal C_\natural$, which is a $\mathbf k$-linear space of unbased loops. We show that the induced double quasi Poisson bracket between boundary measurements can be described via noncommutative $r$-matrix formalism. This gives a more conceptual proof of the result of N. Ovenhouse that traces of powers of Lax matrix form an infinite collection of noncommutative Hamiltonians in involution with respect to noncommutative Goldman bracket on $\mathcal C_\natural$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.