Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Red Light Green Light Method for Solving Large Markov Chains (2008.02710v3)

Published 6 Aug 2020 in math.NA, cs.DC, cs.NA, math.OC, and math.PR

Abstract: Discrete-time discrete-state finite Markov chains are versatile mathematical models for a wide range of real-life stochastic processes. One of most common tasks in studies of Markov chains is computation of the stationary distribution. Without loss of generality, and drawing our motivation from applications to large networks, we interpret this problem as one of computing the stationary distribution of a random walk on a graph. We propose a new controlled, easily distributed algorithm for this task, briefly summarized as follows: at the beginning, each node receives a fixed amount of cash (positive or negative), and at each iteration, some nodes receive `green light' to distribute their wealth or debt proportionally to the transition probabilities of the Markov chain; the stationary probability of a node is computed as a ratio of the cash distributed by this node to the total cash distributed by all nodes together. Our method includes as special cases a wide range of known, very different, and previously disconnected methods including power iterations, Gauss-Southwell, and online distributed algorithms. We prove exponential convergence of our method, demonstrate its high efficiency, and derive scheduling strategies for the green-light, that achieve convergence rate faster than state-of-the-art algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.