Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry (2008.02517v1)

Published 6 Aug 2020 in math.OC, cs.NA, math.DG, math.NA, and stat.ML

Abstract: We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riemannian exponential than the previously known. We compute these bounds explicitly for some manifolds commonly used in the optimization literature such as the special orthogonal group and the real Grassmannian. Along the way, we present self-contained proofs of fully general bounds on the norm of the differential of the exponential map and certain cosine inequalities on manifolds, which are commonly used in optimization on manifolds.

Citations (11)

Summary

We haven't generated a summary for this paper yet.