Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Indirect Inference for Models with Intractable Normalizing Functions (2008.02497v1)

Published 6 Aug 2020 in stat.CO and stat.AP

Abstract: Inference for doubly intractable distributions is challenging because the intractable normalizing functions of these models include parameters of interest. Previous auxiliary variable MCMC algorithms are infeasible for multi-dimensional models with large data sets because they depend on expensive auxiliary variable simulation at each iteration. We develop a fast Bayesian indirect algorithm by replacing an expensive auxiliary variable simulation from a probability model with a computationally cheap simulation from a surrogate model. We learn the relationship between the surrogate model parameters and the probability model parameters using Gaussian process approximations. We apply our methods to challenging simulated and real data examples, and illustrate that the algorithm addresses both computational and inferential challenges for doubly intractable distributions. Especially for a large social network model with 10 parameters, we show that our method can reduce computing time from about 2 weeks to 5 hours, compared to the previous method. Our method allows practitioners to carry out Bayesian inference for more complex models with larger data sets than before.

Summary

We haven't generated a summary for this paper yet.