Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Loop Combiner: Neural Network Models for Assessing the Compatibility of Loops (2008.02011v2)

Published 5 Aug 2020 in cs.SD, cs.IR, cs.LG, and eess.AS

Abstract: Music producers who use loops may have access to thousands in loop libraries, but finding ones that are compatible is a time-consuming process; we hope to reduce this burden with automation. State-of-the-art systems for estimating compatibility, such as AutoMashUpper, are mostly rule-based and could be improved on with machine learn-ing. To train a model, we need a large set of loops with ground truth compatibility values. No such dataset exists, so we extract loops from existing music to obtain positive examples of compatible loops, and propose and compare various strategies for choosing negative examples. For re-producibility, we curate data from the Free Music Archive.Using this data, we investigate two types of model architectures for estimating the compatibility of loops: one based on a Siamese network, and the other a pure convolutional neural network (CNN). We conducted a user study in which participants rated the quality of the combinations suggested by each model, and found the CNN to outperform the Siamese network. Both model-based approaches outperformed the rule-based one. We have opened source the code for building the models and the dataset.

Citations (13)

Summary

We haven't generated a summary for this paper yet.