Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytic Characterization of the Hessian in Shallow ReLU Models: A Tale of Symmetry (2008.01805v2)

Published 4 Aug 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider the optimization problem associated with fitting two-layers ReLU networks with respect to the squared loss, where labels are generated by a target network. We leverage the rich symmetry structure to analytically characterize the Hessian at various families of spurious minima in the natural regime where the number of inputs $d$ and the number of hidden neurons $k$ is finite. In particular, we prove that for $d\ge k$ standard Gaussian inputs: (a) of the $dk$ eigenvalues of the Hessian, $dk - O(d)$ concentrate near zero, (b) $\Omega(d)$ of the eigenvalues grow linearly with $k$. Although this phenomenon of extremely skewed spectrum has been observed many times before, to our knowledge, this is the first time it has been established {rigorously}. Our analytic approach uses techniques, new to the field, from symmetry breaking and representation theory, and carries important implications for our ability to argue about statistical generalization through local curvature.

Citations (15)

Summary

We haven't generated a summary for this paper yet.