Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalized SIS Epidemic Model on Temporal Networks with Asymptomatic Carriers and Comments on Decay Ratio (2008.00826v1)

Published 26 Jul 2020 in physics.soc-ph, cs.SI, cs.SY, and eess.SY

Abstract: We study the class of SIS epidemics on temporal networks and propose a new activity-driven and adaptive epidemic model that captures the impact of asymptomatic and infectious individuals in the network. In the proposed model, referred to as the A-SIYS epidemic, each node can be in three possible states: susceptible, infected without symptoms or asymptomatic and infected with symptoms or symptomatic. Both asymptomatic and symptomatic individuals are infectious. We show that the proposed A-SIYS epidemic captures several well-established epidemic models as special cases and obtain sufficient conditions under which the disease gets eradicated by resorting to mean-field approximations. In addition, we highlight a potential inaccuracy in the derivation of the upper bound on the decay ratio in the activity-driven adaptive SIS (A-SIS) model in (Ogura et. al., 2019) and present a more general version of their result. We numerically illustrate the evolution of the fraction of infected nodes in the A-SIS epidemic model and show that the bound in (Ogura et. al., 2019) often fails to capture the behavior of the epidemic in contrast with our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ashish R. Hota (31 papers)
  2. Kavish Gupta (2 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.