Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Signal Processing on Directed Graphs (2008.00586v1)

Published 2 Aug 2020 in eess.SP

Abstract: This paper provides an overview of the current landscape of signal processing (SP) on directed graphs (digraphs). Directionality is inherent to many real-world (information, transportation, biological) networks and it should play an integral role in processing and learning from network data. We thus lay out a comprehensive review of recent advances in SP on digraphs, offering insights through comparisons with results available for undirected graphs, discussing emerging directions, establishing links with related areas in machine learning and causal inference in statistics, as well as illustrating their practical relevance to timely applications. To this end, we begin by surveying (orthonormal) signal representations and their graph frequency interpretations based on novel measures of signal variation for digraphs. We then move on to filtering, a central component in deriving a comprehensive theory of SP on digraphs. Indeed, through the lens of filter-based generative signal models, we explore a unified framework to study inverse problems (e.g., sampling and deconvolution on networks), statistical analysis of random signals, and topology inference of digraphs from nodal observations.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.