Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

The Importance of Being Correlated: Implications of Dependence in Joint Spectral Inference across Multiple Networks (2008.00163v3)

Published 1 Aug 2020 in stat.ME and stat.ML

Abstract: Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent networks can deliver more accurate estimation than individual spectral decompositions of those same networks. Such inference procedures typically rely heavily on independence assumptions across the multiple network realizations, and even in this case, little attention has been paid to the induced network correlation in such joint embeddings. Here, we present a generalized omnibus embedding methodology and provide a detailed analysis of this embedding across both independent and correlated networks, the latter of which significantly extends the reach of such procedures. We describe how this omnibus embedding can itself induce correlation, leading us to distinguish between inherent correlation -- the correlation that arises naturally in multisample network data -- and induced correlation, which is an artifice of the joint embedding methodology. We show that the generalized omnibus embedding procedure is flexible and robust, and prove both consistency and a central limit theorem for the embedded points. We examine how induced and inherent correlation can impact inference for network time series data, and we provide network analogues of classical questions such as the effective sample size for more generally correlated data. Further, we show how an appropriately calibrated generalized omnibus embedding can detect changes in real biological networks that previous embedding procedures could not discern, confirming that the effect of inherent and induced correlation can be subtle and transformative, with import in theory and practice.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.