Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating the Backfire Effect Using Pacing and Leading (2008.00049v1)

Published 31 Jul 2020 in cs.SI and stat.AP

Abstract: Online social networks create echo-chambers where people are infrequently exposed to opposing opinions. Even if such exposure occurs, the persuasive effect may be minimal or nonexistent. Recent studies have shown that exposure to opposing opinions causes a backfire effect, where people become more steadfast in their original beliefs. We conducted a longitudinal field experiment on Twitter to test methods that mitigate the backfire effect while exposing people to opposing opinions. Our subjects were Twitter users with anti-immigration sentiment. The backfire effect was defined as an increase in the usage frequency of extreme anti-immigration language in the subjects' posts. We used automated Twitter accounts, or bots, to apply different treatments to the subjects. One bot posted only pro-immigration content, which we refer to as arguing. Another bot initially posted anti-immigration content, then gradually posted more pro-immigration content, which we refer to as pacing and leading. We also applied a contact treatment in conjunction with the messaging based methods, where the bots liked the subjects' posts. We found that the most effective treatment was a combination of pacing and leading with contact. The least effective treatment was arguing with contact. In fact, arguing with contact consistently showed a backfire effect relative to a control group. These findings have many limitations, but they still have important implications for the study of political polarization, the backfire effect, and persuasion in online social networks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.