2000 character limit reached
Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture (2007.16003v2)
Published 31 Jul 2020 in math.AP
Abstract: We study in this paper the small data Cauchy problem for the semilinear generalized Tricomi equations with a nonlinear term of derivative type $u_{tt}-t{2m}\Delta u=|u_t|p$ for $m\ge0$. Blow-up result and lifespan estimate from above are established for $1<p\le 1+\frac{2}{(m+1)(n-1)-m}$. If $m=0$, our results coincide with those of the semilinear wave equation. The novelty consists in the construction of a new test function, by combining cut-off functions, the modified Bessel function and a harmonic function. Interestingly, if $n=2$ the blow-up power is independent of $m$. We also furnish a local existence result, which implies the optimality of lifespan estimate at least in the $1$-dimensional case.