Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases (2007.15802v1)

Published 31 Jul 2020 in cs.LG, cs.CR, and stat.ML

Abstract: When the training data are maliciously tampered, the predictions of the acquired deep neural network (DNN) can be manipulated by an adversary known as the Trojan attack (or poisoning backdoor attack). The lack of robustness of DNNs against Trojan attacks could significantly harm real-life ML systems in downstream applications, therefore posing widespread concern to their trustworthiness. In this paper, we study the problem of the Trojan network (TrojanNet) detection in the data-scarce regime, where only the weights of a trained DNN are accessed by the detector. We first propose a data-limited TrojanNet detector (TND), when only a few data samples are available for TrojanNet detection. We show that an effective data-limited TND can be established by exploring connections between Trojan attack and prediction-evasion adversarial attacks including per-sample attack as well as all-sample universal attack. In addition, we propose a data-free TND, which can detect a TrojanNet without accessing any data samples. We show that such a TND can be built by leveraging the internal response of hidden neurons, which exhibits the Trojan behavior even at random noise inputs. The effectiveness of our proposals is evaluated by extensive experiments under different model architectures and datasets including CIFAR-10, GTSRB, and ImageNet.

Citations (138)

Summary

We haven't generated a summary for this paper yet.