Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Momentum Q-learning with Finite-Sample Convergence Guarantee (2007.15418v1)

Published 30 Jul 2020 in cs.LG, math.OC, and stat.ML

Abstract: Existing studies indicate that momentum ideas in conventional optimization can be used to improve the performance of Q-learning algorithms. However, the finite-sample analysis for momentum-based Q-learning algorithms is only available for the tabular case without function approximations. This paper analyzes a class of momentum-based Q-learning algorithms with finite-sample guarantee. Specifically, we propose the MomentumQ algorithm, which integrates the Nesterov's and Polyak's momentum schemes, and generalizes the existing momentum-based Q-learning algorithms. For the infinite state-action space case, we establish the convergence guarantee for MomentumQ with linear function approximations and Markovian sampling. In particular, we characterize the finite-sample convergence rate which is provably faster than the vanilla Q-learning. This is the first finite-sample analysis for momentum-based Q-learning algorithms with function approximations. For the tabular case under synchronous sampling, we also obtain a finite-sample convergence rate that is slightly better than the SpeedyQ \citep{azar2011speedy} when choosing a special family of step sizes. Finally, we demonstrate through various experiments that the proposed MomentumQ outperforms other momentum-based Q-learning algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.