Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Improving Sample Efficiency with Normalized RBF Kernels (2007.15397v2)

Published 30 Jul 2020 in cs.LG and stat.ML

Abstract: In deep learning models, learning more with less data is becoming more important. This paper explores how neural networks with normalized Radial Basis Function (RBF) kernels can be trained to achieve better sample efficiency. Moreover, we show how this kind of output layer can find embedding spaces where the classes are compact and well-separated. In order to achieve this, we propose a two-phase method to train those type of neural networks on classification tasks. Experiments on CIFAR-10 and CIFAR-100 show that networks with normalized kernels as output layer can achieve higher sample efficiency, high compactness and well-separability through the presented method in comparison to networks with SoftMax output layer.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com