Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ISS Estimates in the Spatial Sup-Norm for Nonlinear 1-D Parabolic PDEs (2007.15204v1)

Published 30 Jul 2020 in math.OC, cs.SY, eess.SY, and math.AP

Abstract: This paper provides novel Input-to-State Stability (ISS)-style maximum principle estimates for classical solutions of highly nonlinear 1-D parabolic Partial Differential Equations (PDEs). The derivation of the ISS-style maximum principle estimates is performed by using an ISS Lyapunov Functional for the sup norm. The estimates provide fading memory ISS estimates in the sup norm of the state with respect to distributed and boundary inputs. The obtained results can handle parabolic PDEs with nonlinear and non-local in-domain terms/boundary conditions. Three illustrative examples show the efficiency of the proposed methodology for the derivation of ISS estimates in the sup norm of the state.

Citations (4)

Summary

We haven't generated a summary for this paper yet.