Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Maximal $L^q$-regularity for parabolic Hamilton-Jacobi equations and applications to Mean Field Games (2007.14873v2)

Published 29 Jul 2020 in math.AP

Abstract: In this paper we investigate maximal $Lq$-regularity for time-dependent viscous Hamilton-Jacobi equations with unbounded right-hand side and superlinear growth in the gradient. Our approach is based on the interplay between new integral and H\"older estimates, interpolation inequalities, and parabolic regularity for linear equations. These estimates are obtained via a duality method `a la Evans. This sheds new light on a parabolic counterpart of a conjecture by P.-L. Lions on maximal regularity for Hamilton-Jacobi equations, recently addressed in the stationary framework by the authors. Finally, applications to the existence problem of classical solutions to Mean Field Games systems with unbounded local couplings are provided.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.