Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The structure of finite commutative idempotent involutive residuated lattices (2007.14483v4)

Published 28 Jul 2020 in math.LO

Abstract: We characterize commutative idempotent involutive residuated lattices as disjoint unions of Boolean algebras arranged over a distributive lattice. We use this description to introduce a new construction, called gluing, that allows us to build new members of this variety from other ones. In particular, all finite members can be constructed in this way from Boolean algebras. Finally, we apply our construction to prove that the fusion reduct of any finite member is a distributive semilattice, and to show that this variety is not locally finite.

Summary

We haven't generated a summary for this paper yet.