Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting Short Vector Pairs by Inner Product and Relations to the Permanent (2007.14092v1)

Published 28 Jul 2020 in cs.DS, cs.CC, and math.CO

Abstract: Given as input two $n$-element sets $\mathcal A,\mathcal B\subseteq{0,1}d$ with $d=c\log n\leq(\log n)2/(\log\log n)4$ and a target $t\in {0,1,\ldots,d}$, we show how to count the number of pairs $(x,y)\in \mathcal A\times \mathcal B$ with integer inner product $\langle x,y \rangle=t$ deterministically, in $n2/2{\Omega\bigl(!\sqrt{\log n\log \log n/(c\log2 c)}\bigr)}$ time. This demonstrates that one can solve this problem in deterministic subquadratic time almost up to $\log2 n$ dimensions, nearly matching the dimension bound of a subquadratic randomized detection algorithm of Alman and Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs w.h.p., to obtain a fast randomized algorithm. Our deterministic algorithm builds on a novel technique of reconstructing a function from sum-aggregates by prime residues, which can be seen as an {\em additive} analog of the Chinese Remainder Theorem. As our second contribution, we relate the fine-grained complexity of the task of counting of vector pairs by inner product to the task of computing a zero-one matrix permanent over the integers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.