Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximations and error analysis of the Cahn-Hilliard equation with reaction rate dependent dynamic boundary conditions (2007.13546v2)

Published 24 Jul 2020 in math.NA and cs.NA

Abstract: We consider numerical approximations and error analysis for the Cahn-Hilliard equation with reaction rate dependent dynamic boundary conditions (P. Knopf et. al., arXiv, 2020). Based on the stabilized linearly implicit approach, a first-order in time, linear and energy stable scheme for solving this model is proposed. The corresponding semi-discretized-in-time error estimates for the scheme are also derived. Numerical experiments, including the comparison with the former work, the convergence results for the relaxation parameter $K\rightarrow0$ and $K\rightarrow\infty$ and the accuracy tests with respect to the time step size, are performed to validate the accuracy of the proposed scheme and the error analysis.

Citations (13)

Summary

We haven't generated a summary for this paper yet.