Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based Graph ResNet for Motor Intent Detection from Raw EEG signals (2007.13484v1)

Published 25 Jun 2020 in eess.SP, cs.AI, cs.CV, cs.LG, and eess.IV

Abstract: In previous studies, decoding electroencephalography (EEG) signals has not considered the topological relationship of EEG electrodes. However, the latest neuroscience has suggested brain network connectivity. Thus, the exhibited interaction between EEG channels might not be appropriately measured via Euclidean distance. To fill the gap, an attention-based graph residual network, a novel structure of Graph Convolutional Neural Network (GCN), was presented to detect human motor intents from raw EEG signals, where the topological structure of EEG electrodes was built as a graph. Meanwhile, deep residual learning with a full-attention architecture was introduced to address the degradation problem concerning deeper networks in raw EEG motor imagery (MI) data. Individual variability, the critical and longstanding challenge underlying EEG signals, has been successfully handled with the state-of-the-art performance, 98.08% accuracy at the subject level, 94.28% for 20 subjects. Numerical results were promising that the implementation of the graph-structured topology was superior to decode raw EEG data. The innovative deep learning approach was expected to entail a universal method towards both neuroscience research and real-world EEG-based practical applications, e.g., seizure prediction.

Citations (19)

Summary

We haven't generated a summary for this paper yet.