Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Equalizer for MIMO-OFDM Systems with Insufficient Cyclic Prefix (2007.11757v1)

Published 23 Jul 2020 in cs.IT, cs.LG, and math.IT

Abstract: In this paper, we study the equalization design for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems with insufficient cyclic prefix (CP). In particular, the signal detection performance is severely impaired by inter-carrier interference (ICI) and inter-symbol interference (ISI) when the multipath delay spread exceeding the length of CP. To tackle this problem, a deep learning-based equalizer is proposed for approximating the maximum likelihood detection. Inspired by the dependency between the adjacent subcarriers, a computationally efficient joint detection scheme is developed. Employing the proposed equalizer, an iterative receiver is also constructed and the detection performance is evaluated through simulations over measured multipath channels. Our results reveal that the proposed receiver can achieve significant performance improvement compared to two traditional baseline schemes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.