Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activation function dependence of the storage capacity of treelike neural networks (2007.11136v3)

Published 21 Jul 2020 in cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: The expressive power of artificial neural networks crucially depends on the nonlinearity of their activation functions. Though a wide variety of nonlinear activation functions have been proposed for use in artificial neural networks, a detailed understanding of their role in determining the expressive power of a network has not emerged. Here, we study how activation functions affect the storage capacity of treelike two-layer networks. We relate the boundedness or divergence of the capacity in the infinite-width limit to the smoothness of the activation function, elucidating the relationship between previously studied special cases. Our results show that nonlinearity can both increase capacity and decrease the robustness of classification, and provide simple estimates for the capacity of networks with several commonly used activation functions. Furthermore, they generate a hypothesis for the functional benefit of dendritic spikes in branched neurons.

Citations (14)

Summary

We haven't generated a summary for this paper yet.