Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Iterative Method for Tuning Complex Simulation Code (2007.09865v1)

Published 20 Jul 2020 in stat.CO

Abstract: Tuning a complex simulation code refers to the process of improving the agreement of a code calculation with respect to a set of experimental data by adjusting parameters implemented in the code. This process belongs to the class of inverse problems or model calibration. For this problem, the approximated nonlinear least squares (ANLS) method based on a Gaussian process (GP) metamodel has been employed by some researchers. A potential drawback of the ANLS method is that the metamodel is built only once and not updated thereafter. To address this difficulty, we propose an iterative algorithm in this study. In the proposed algorithm, the parameters of the simulation code and GP metamodel are alternatively re-estimated and updated by maximum likelihood estimation and the ANLS method. This algorithm uses both computer and experimental data repeatedly until convergence. A study using toy-models including inexact computer code with bias terms reveals that the proposed algorithm performs better than the ANLS method and the conditional-likelihood-based approach. Finally, an application to a nuclear fusion simulation code is illustrated.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.