Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private, Fair, and Verifiable Aggregate Statistics for Mobile Crowdsensing in Blockchain Era (2007.09698v1)

Published 19 Jul 2020 in cs.CR

Abstract: In this paper, we propose FairCrowd, a private, fair, and verifiable framework for aggregate statistics in mobile crowdsensing based on the public blockchain. In specific, mobile users are incentivized to collect and share private data values (e.g., current locations) to fufill a commonly interested task released by a customer, and the crowdsensing server computes aggregate statistics over the values of mobile users (e.g., the most popular location) for the customer. By utilizing the ElGamal encryption, the server learns nearly nothing about the private data or the statistical result. The correctness of aggregate statistics can be publicly verified by using a new efficient and verifiable computation approach. Moreover, the fairness of incentive is guaranteed based on the public blockchain in the presence of greedy service provider, customers, and mobile users, who may launch payment-escaping, payment-reduction, free-riding, double-reporting, and Sybil attacks to corrupt reward distribution. Finally, FairCrowd is proved to achieve verifiable aggregate statistics with privacy preservation for mobile users. Extensive experiments are conducted to demonstrate the high efficiency of FairCrowd for aggregate statistics in mobile crowdsensing.

Citations (5)

Summary

We haven't generated a summary for this paper yet.