Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Bohr Radius Constants For Certain Analytic Functions (2007.09662v1)

Published 19 Jul 2020 in math.CV

Abstract: The Bohr radius for a class $\mathcal{G}$ consisting of analytic functions $f(z)=\sum_{n=0}{\infty}a_nzn$ in unit disc $\mathbb{D}={z\in\mathbb{C}:|z|<1}$ is the largest $r*$ such that every function $f$ in the class $\mathcal{G}$ satisfies the inequality \begin{equation*} d\left(\sum_{n=0}{\infty}|a_nzn|, |f(0)|\right) = \sum_{n=1}{\infty}|a_nzn|\leq d(f(0), \partial f(\mathbb{D})) \end{equation*} for all $|z|=r \leq r*$, where $d$ is the Euclidean distance. In this paper, our aim is to determine the Bohr radius for the classes of analytic functions $f$ satisfying differential subordination relations $zf'(z)/f(z) \prec h(z)$ and $f(z)+\beta z f'(z)+\gamma z2 f''(z)\prec h(z)$, where $h$ is the Janowski function. Analogous results are obtained for the classes of $\alpha$-convex functions and typically real functions, respectively. All obtained results are sharp.

Summary

We haven't generated a summary for this paper yet.