Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Optimal Delocalization for Generalized Wigner Matrices (2007.09585v2)

Published 19 Jul 2020 in math.PR, math-ph, and math.MP

Abstract: We study the eigenvectors of generalized Wigner matrices with subexponential entries and prove that they delocalize at the optimal rate with overwhelming probability. We also prove high probability delocalization bounds with sharp constants. Our proof uses an analysis of the eigenvector moment flow introduced by Bourgade and Yau (2017) to bound logarithmic moments of eigenvector entries for random matrices with small Gaussian components. We then extend this control to all generalized Wigner matrices by comparison arguments based on a framework of regularized eigenvectors, level repulsion, and the observable employed by Landon, Lopatto, and Marcinek (2018) to compare extremal eigenvalue statistics. Additionally, we prove level repulsion and eigenvalue overcrowding estimates for the entire spectrum, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.