Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A finite element method for Allen-Cahn equation on deforming surface (2007.09531v2)

Published 18 Jul 2020 in math.NA, cs.NA, math-ph, and math.MP

Abstract: The paper studies an Allen-Cahn-type equation defined on a time-dependent surface as a model of phase separation with order-disorder transition in a thin material layer. By a formal inner-outer expansion, it is shown that the limiting behavior of the solution is a geodesic mean curvature type flow in reference coordinates. A geometrically unfitted finite element method, known as a trace FEM, is considered for the numerical solution of the equation. The paper provides full stability analysis and convergence analysis that accounts for interpolation errors and an approximate recovery of the geometry.

Citations (18)

Summary

We haven't generated a summary for this paper yet.