Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Query Complexity of Global Minimum Cut (2007.09202v2)

Published 17 Jul 2020 in cs.DS

Abstract: In this work, we resolve the query complexity of global minimum cut problem for a graph by designing a randomized algorithm for approximating the size of minimum cut in a graph, where the graph can be accessed through local queries like {\sc Degree}, {\sc Neighbor}, and {\sc Adjacency} queries. Given $\epsilon \in (0,1)$, the algorithm with high probability outputs an estimate $\hat{t}$ satisfying the following $(1-\epsilon) t \leq \hat{t} \leq (1+\epsilon) t$, where $m$ is the number of edges in the graph and $t$ is the size of minimum cut in the graph. The expected number of local queries used by our algorithm is $\min\left{m+n,\frac{m}{t}\right}\mbox{poly}\left(\log n,\frac{1}{\epsilon}\right)$ where $n$ is the number of vertices in the graph. Eden and Rosenbaum showed that $\Omega(m/t)$ many local queries are required for approximating the size of minimum cut in graphs. These two results together resolve the query complexity of the problem of estimating the size of minimum cut in graphs using local queries. Building on the lower bound of Eden and Rosenbaum, we show that, for all $t \in \mathbb{N}$, $\Omega(m)$ local queries are required to decide if the size of the minimum cut in the graph is $t$ or $t-2$. Also, we show that, for any $t \in \mathbb{N}$, $\Omega(m)$ local queries are required to find all the minimum cut edges even if it is promised that the input graph has a minimum cut of size $t$. Both of our lower bound results are randomized, and hold even if we can make {\sc Random Edge} query apart from local queries.

Citations (6)

Summary

We haven't generated a summary for this paper yet.