Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Approximations for Min Sum Vertex Cover and Generalized Min Sum Set Cover (2007.09172v1)

Published 17 Jul 2020 in cs.DS and cs.DM

Abstract: We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lov\'{a}sz and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $\ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1){1+1/p}$, for all $p\ge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.

Citations (12)

Summary

We haven't generated a summary for this paper yet.