Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A highly accurate boundary integral method for the elastic obstacle scattering problem (2007.08808v1)

Published 17 Jul 2020 in math.NA and cs.NA

Abstract: Consider the scattering of a time-harmonic plane wave by a rigid obstacle embedded in a homogeneous and isotropic elastic medium in two dimensions. In this paper, a novel boundary integral formulation is proposed and its highly accurate numerical method is developed for the elastic obstacle scattering problem. More specifically, based on the Helmholtz decomposition, the model problem is reduced to a coupled boundary integral equation with singular kernels. A regularized system is constructed in order to handle the degenerated integral operators. The semi-discrete and full-discrete schemes are studied for the boundary integral system by using the trigonometric collocation method. Convergence is established for the numerical schemes in some appropriate Sobolev spaces. Numerical experiments are presented for both smooth and nonsmooth obstacles to demonstrate the superior performance of the proposed method.

Citations (17)

Summary

We haven't generated a summary for this paper yet.