Papers
Topics
Authors
Recent
2000 character limit reached

The Higher Dimensional Tropical Vertex

Published 16 Jul 2020 in math.AG, math-ph, math.MP, and math.SG | (2007.08347v2)

Abstract: We study log Calabi-Yau varieties obtained as a blow-up of a toric variety along hypersurfaces in its toric boundary. Mirrors to such varieties are constructed by Gross-Siebert from a canonical scattering diagram built by using punctured log Gromov-Witten invariants of Abramovich-Chen-Gross-Siebert. We show that there is a piecewise linear isomorphism between the canonical scattering diagram and a scattering diagram defined algortihmically, following a higher dimensional generalisation of the Kontsevich-Soibelman construction. We deduce that the punctured log Gromov-Witten invariants of the log Calabi-Yau variety can be captured from this algorithmic construction. As a particular example, we compute these invariants for a non-toric blow-up of the three dimensional projective space along two lines. This generalizes previous results of Gross-Pandharipande-Siebert on "The Tropical Vertex" to higher dimensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.