Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Higher Dimensional Tropical Vertex (2007.08347v2)

Published 16 Jul 2020 in math.AG, math-ph, math.MP, and math.SG

Abstract: We study log Calabi-Yau varieties obtained as a blow-up of a toric variety along hypersurfaces in its toric boundary. Mirrors to such varieties are constructed by Gross-Siebert from a canonical scattering diagram built by using punctured log Gromov-Witten invariants of Abramovich-Chen-Gross-Siebert. We show that there is a piecewise linear isomorphism between the canonical scattering diagram and a scattering diagram defined algortihmically, following a higher dimensional generalisation of the Kontsevich-Soibelman construction. We deduce that the punctured log Gromov-Witten invariants of the log Calabi-Yau variety can be captured from this algorithmic construction. As a particular example, we compute these invariants for a non-toric blow-up of the three dimensional projective space along two lines. This generalizes previous results of Gross-Pandharipande-Siebert on "The Tropical Vertex" to higher dimensions.

Summary

We haven't generated a summary for this paper yet.