Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analytical solutions to some generalized and polynomial eigenvalue problems

Published 16 Jul 2020 in math.NA, cs.NA, math.RA, and math.SP | (2007.08130v4)

Abstract: It is well-known that the finite difference discretization of the Laplacian eigenvalue problem $-\Delta u = \lambda u$ leads to a matrix eigenvalue problem (EVP) $A x= \lambda x$ where the matrix $A$ is Toeplitz-plus-Hankel. Analytical solutions to tridiagonal matrices with various boundary conditions are given in Strang and MacNamara \cite{strang2014functions}. We generalize the results and develop analytical solutions to the generalized matrix eigenvalue problems (GEVPs) $A x= \lambda Bx$ which arise from the finite element method (FEM) and isogeometric analysis (IGA). The FEM matrices are corner-overlapped block-diagonal while the IGA matrices are almost Toeplitz-plus-Hankel. In fact, IGA with a correction that results in Toeplitz-plus-Hankel matrices gives a better numerical method. In this paper, we focus on finding the analytical eigenpairs to the GEVPs while developing better numerical methods is our motivation. Analytical solutions are also obtained for some polynomial eigenvalue problems (PEVPs). Lastly, we generalize the eigenvector-eigenvalue identity (rediscovered and coined recently for EVPs) for GEVPs and derive some trigonometric identities.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.